The Carbon Key:

Linking Regenerating Soils to Human Health and Adapting to Climatic Uncertainty

Dr. Kris Nichols KRIS Systems Education and Consultation Pachaterrae Inc. Kris@KRIS-systems.com

Soil Health

The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil

Soil Health

The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.

Why? > Resilience > Resistance > Nutritive Quality > Overall Profitability

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil

Soil Degradation

Soils have been hemorrhaging but focusing solely on yield, no-till, or grazing just stops the bleeding. The patient i.e. soil needs a transfusion and will die anyway without a systems approach that starts with photosynthesis.

The Carbon Problem Soils Deficient in Carbon

Dave Brandt Farm Carroll, Ohio

10.15.2013

Progress after 35 years

Regenerative Organic

Stabilized Biologically, Chemically, and Physically

Labile

Microbial

Recalcitrant

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soll

Systems Approach that starts with Photosynthesis.

Photosynthesis – most efficient form of solar energy conversion to chemical energy in the bonds between carbon atoms or carbon atoms and other atoms.

TREAT SOIL LIKE YOU' RE SUPPOSED TO TREAT YOURSELF

>Eat small meals throughout the day (be a grazer). \succ Eat a diverse diet. Exercise but don't over exercise - FIST (Frequency, Intensity, Scale, Timing). Protect your body from injury, radiation, temperature extremes, etc. (armor).

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil

ECO-FUNCTIONAL INTENSIFICATION

- Maximize the use of the landscape
- Not more but less
- Multiple enterprises
- Everything costs but redistribute risk
- Nutrient density

THE BROWN REVOLUTION

Recognize proper soil management as the most ecologically and economically regenerative form of agriculture to provide nutrient dense food.

- Provide food, fiber, and fuel
- Provide nutrients
- Protect the soil
- Manage pests
- Consistency
- Resiliency
- Moisture to roots
- Maximize efficiency
- o Make money

Living Roots (Green and Growing)

Soil Regeneration Pyramid

THE BROWN REVOLUTION

Living Roots:

Growing Degree Days
Greenness Index
Vegetative Growth

Living Roots (Green and Growing)

Soil Regeneration Pyramid

GREENNESS INDEX AND VEGETATIVE GROWTH

- Harvesting sunlight
- Temperature vs sun
- Plant selection
 - New/old plants
 - Relay/double/poly cropping
 - Perennials/annuals
- Carbon economy costs and biomass of microbes

STARVING AND HOMELESS

- Soil is organic (i.e. living)
- Billions of different organisms from millions of species
- Total weight of living organisms in the top six inches of an acre of soil can range from 5,000 to 20,000 lbs

Soil from one spot may house a very different community from soil just a yard (meter) away

THE BROWN REVOLUTION

- 1. Plant Diversity
 - a. C:N (Doughnut Diet)
 - b. Weed management

2. Microbial and Macrobial Diversity

- a. Nutrient cycling
- b. Resilience
- c. Disease management
- d. Pest management

Diversity

Living Roots (Green and Growing)

Soil Regeneration Pyramid

AGROECOSYSTEM RESILIENCE

Response to pest pressures

- Tracking insect and disease pests
- Tracking weed community dynamics
- Measuring yield declines from weeds

THE BROWN REVOLUTION

Reduced or No Synthetic Nutrients:

1. Carbonomics

Reduced or No Synthetic Nutrients

Diversity

Living Roots (Green and Growing)

Soil Regeneration Pyramid

Root of the Problem is the Root of the Solution

INTERACTIVE CARBON ECONOMY

- Plants trade carbon to fungi and bacteria
 - Mycorrhizal fungi
 - Rhizobium N fixation
 - P-solubilization
 - Aggregate formation
 - Porosity
 - Soil structure
- Nematodes and Protozoa eat bacteria and fungi for N
- Microarthropods prep residues for bacteria

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soll

Nutrient Use Efficiency

- Plant available synthetic vs. biologic
- 30-50% of nitrogen fertilizer is used by the plant (Hirel et al 2011)
- 30% of phosphorus is used by the plant
- Availability, timing, water, and pH

- Tilman et al., 2002

Steve Groff @CoverCropCoach · 6h I collected "snirt" (wind-blown snow/ dirt) on Jan 7 from a local farm with tilled soil. Got it tested and below are the results I got back today. As suspected, it is the BEST soil that blows away! #covercrops and #notill would eliminate this. 3rd pic is my fields.

Test	Method	Results	SOIL TEST RATINGS					Calculated Cation	
			Very Low	Low	Medium	Optimum	Very High	Exchange	Capacity
Soil pH	1;1	7.3					13.4 meq/10		
Buffer pH							%Saturation		
Phosphorus (P)	M3	204 ppm						%sat	meq
Potassium (K)	M3	324 ppm						K 6.2	0.8
Calcium (Ca)	M3	2119 ppm						Ca 79.1	10.6
Magnesium (Mg)	M3	218 ppm				and the second se		Mg 13.6	5 1.8
Sulfur (S)	M3	14 ppm						H 0.0	0.0
Boron (B)	M3	1.4 ppm						Na 1.1	0.1
Copper (Cu)	M3	4.1 ppm					i i		
Iron (Fe)	M3	100 ppm					Γ	K/Mg Ratio:	0.46
Manganese (Mn)	M3	231 ppm						Ca/Mg Ratio:	5.82
Zinc (Zn)	M3	11.4 ppm							
Sodium (Na)	M3	34 ppm				8			
Soluble Salts								1	
Organic Matter	LOI	3.6% ENR 116						1	
Nitrate Nitrogen									
			Nea	r Steve	Groff's	Farm iı	n south	centra	al PA

WHAT'S IMPORTANT TO ME?

SW MN - Holland well field - water for 65,000 people

ARBUSCULAR MYCORRHIZAL FUNGI

- Obtain nutrients (up to 90% of N and P) – Smith and Read, 2008
 - Phosphate-solubilizing bacteria – Toro and Barea, 1996
 - Mixed cultures more efficient, but this was also AMF species dependent – Walder et al 2012
 - Non-legume trades P for N via AMF and rhizobia activity

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil

Plant to Plant Nutrient Exchange

Interplant transfer N for P and C

N fixation: N₂ via 32 ATP (needs 128 P and 320 C)

Hyphae

Nodule

THE BROWN REVOLUTION

Manage Livestock:

- 1. Livestock of all sizes including insects
- 2. Carbon movement
- 3. Nutrient cycling
- 4. Tool

Manage Livestock

Reduced or No Synthetic Nutrients

Diversity

Living Roots (Green and Growing)

Soil Regeneration Pyramid

GRAZING AND CARBONOMICS

THE BROWN REVOLUTION Soil Armor:

Protection
Food

Soil Armor

Manage Livestock

Reduced or No Synthetic Nutrients

Diversity

Living Roots (Green and Growing)

Soil Regeneration Pyramid

THE BROWN REVOLUTION

Habitat
Food

Reduced or No Tillage

Soil Armor

Manage Livestock

Reduced or No Synthetic Nutrients

Diversity

Living Roots (Green and Growing)

Soil Regeneration Pyramid

Soil Architecture – Soil Aggregates

Aggregate Stability

WSA = 14%

WSA = 47%

WSA = 93%

CT, SW-F

NT, SW-WW-SF

Moderately-grazed pasture

Brown Ranch near Bismarck, ND after 13.6 inches (330 mm) of rainfall in 24 hrs in June 15, 2009

Infiltration Rates Increase: 1991 – 0.5 inches (13 mm) per hour 2011 – 8 inches (203 mm) per hour Porosity increases: 45% increase in porosity = infiltration increase of 167% 25 mm (1 inch) and 650% 50 mm (2 inches) -Karlen et al., 1998

Kutztown, PA Corn During 1995 Drought

Organic 134 bu/ac 3.4 tons/ac Conventional 102 bu/ac 2.6 tons/ac

Water percolation volumes were 15-20% higher

Kutztown, PA 2015

Organic Corn 18% higher yield

Conventional Corn

2016 Rodale Institute – Kutztown, PA

Water Used for Nutrition

FST 2015 – Nutrient Stress in Chemically-Intensive Corn -Leaching in spring due to higher than normal precipitation and drier than normal fall.

Unfertilized corn needed nearly 5 times the amount of water as the fertilized corn.

– W.A. Albrecht, University of Missouri, 1950's

YOUR NEW BOSS: THE CONSUMER

What consumers, primarily women, say and do regarding food and food trends.

ABOUT GMOS

66% support mandatory labeling

40% reduce or avoid GM0 ingredients (up 10% since 2010)

48% say GMO-free is important in food decisions

ABOUT PAYING MORE

25% is how much extra they will pay for food they see as fresher, healthier, and more nutritious

ABOUT THE INTERNET

45% use it for recipe information

ABOUT ORGANICS

73% buy at least occasionally (up from 55% in 2000)

> SODA SALES HAVE DROPPED 25% Since 1998.

replaced mostly by bottled water

AND THOSE DARN Millennials (under 35):

76% buy local foods (up 20% in two years)

81% are willing to pay a premium for

a premium for foods with a health benefit

50% have or would buy groceries online

Source: Better Homes and Gardense, The Hartman Group, Mintel Group, Pamela Koch with Columbia University, and The Nielsen Company

Illustrations: tora-nosuke, iStock.com

6 Successful Farming | Agriculture.com | Mid-February 2016

YOUR NEW BOSS: THE CONSUMER

What consumers, primarily women, say and do regarding food and food trends.

ABOUT GMOS 66% support mandatory labeling 40% reduce or avoid GMO ingredients (up 10% since 2010) **48%** say GMO-free is important in food decisions IBOUT PAYING MORE 25% is how much extra they will pay for food they see as fresher, healthier, and more nutritious **ABOUT THE INTERNET**

45% use it for recipe information

ABOUT ORGANICS 73% buy at least occasionally (up from 55% in 2000) AND THOSE DARN MILLENNIALS (UNDER 35):

> 76% buy local foods (up 20% in two years)

81% are willing to pay a premium for foods with a health benefit

50% have or would buy groceries online

#1 HEALTHY-EATING STRATEGY IS EATING MORE FRUITS AND VEGGIES followed by • eating at

HUMAN HEALTH

Source: Economic Research Service with USDA and proprietary data

NUTRIENTS AND HEALTH

Change in fruit and vegetable nutrient status from tests in 1950 and 1999.

Davis 2009

NUTRIENTS AND HEALTH

80 year changes in maize nutrient content in 45 varieties released between 1920 and 2001

Davis 2009

Soil Health = Plant Health = Human Health

POLYCULTURE SYSTEM – MICROBES AND CROPS

The Brown Revolution Principles Solving the Carbon Problem

- 1.MAXIMIZE LIVING ROOTS diversify and lengthen the rotation; use carefully chosen cover crops; manage livestock – Adding, Keeping, and Diversifying Carbon
- 2.ENERGIZE WITH DIVERSITY diversify and lengthen rotation; use cover crops and compost – Adding and Diversifying Carbon (Best weed management tool - C.E. Leighty. 1938 Yearbook of Agriculture)
- **3.REDUCE CHEMICAL INPUTS** allows for plant microbe carbon trading Adding Carbon
- 4.INSERT LIVESTOCK manage animals including insects for soil – Adding, Keeping, and Diversifying Carbon
- 5.MINIMIZE SOIL DISTURBANCE reduce tillage; use cover crops, compost, and mulch; manage livestock – Keeping not Adding Carbon
- 6.KEEP THE SOIL COVERED reduce tillage; retain residue; use cover crops, compost, and mulch – Keeping, Adding, and Diversifying Carbon

Soil is the Heart of the System

> KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil

It really boils down to this: that all life is interrelated. We are all caught in an inescapable network of mutuality, tied into a single garment of destiny. Whatever affects one destiny, affects all indirectly. *Martin Luther King Jr., Christmas Eve Serman, 1967*

Dr. Kris Nichols Soil Microbiologist Founder and Principal Scientist KRIS Education and Consultation <u>www.KRIS-Systems.com</u> Kris@KRIS-Systems.com glomalin1972@gmail.com

KRIS Systems Education & Consultation Knowledge for Regeneration & Innovation in Soil